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SUMMARY 

Affinity chromatography can be used as an analytical tool to measure the 
binding constants for biological interactions. Most chromatography theories are 
based on the assumption that the equilibrium isotherm is linear, a poor assumption 
for most biological interactions. This paper presents a local-equilibrium theory for 
nonlinear zonal and frontal elution chromatography. Results are compared to other 
commonly-used affinity chromatography elution equations. The effect of isotherm 
nonlinearity is shown to be relatively small, provided the product of the association 
constant and feed concentration is less than 1. The major effect of nonlinearity is 
zone spreading; this can be very important when measuring rate constants. The mea- 
surement of binding kinetics by analytical affinity chromatography is discussed in 
Part II. 

INTRODUCTION 

In the last ten years affinity chromatography has been gaining popularity as 
an analytical tool for studying kinetics and thermodynamics of biological interac- 
tions’J. In affinity chromatography the partitioning of a solute between the liquid 
and solid phases, and therefore the retention time in a column, is governed by the 
strength of binding of the soluble biochemical to immobilized ligands. The rates of 
diffusion and binding kinetics, on the other hand, govern the spreading of a peak or 
breakthrough curve. Thus by studying the positions and shapes of effluent concen- 
tration profiles one can determine equilibrium binding constants and rate constants 
for the interaction between the solute and immobilized ligand. 

Substances that facilitate or compete with the solute-ligand interaction will 
influence the solute retention time in an affinity column. Thus affinity experiments 
can be used to identify inhibitors, immunological cross-reactivities, and in general to 
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identify conditions that inhibit or enhance biological binding. The experiments can 
be performed quantitatively to evaluate binding constants and inhibition constants 
under a variety of conditions, including temperature, pH, or ionic strength. Dunn3 
has recently published a useful review of the literature on analytical affinity chro- 
matography. 

The purpose of this paper is to point out some inconsistencies in and clarify 
some issues that have arisen from the theoretical treatments of analytical affinity 
chromatography. A number of elution volume equations have been derived in order 
to extract equilibrium information from affinity experiments. Most of these equations 
have been derived under the assumption that the equilibria among all interacting 
species is reached instantaneously (the local-equilibrium assumption). The resulting 
equations then relate the elution volume of a solute peak or breakthrough curve to 
the concentrations of immobilized and soluble ligand, inhibitor, etc. and to the as- 
sociation constants for these interactions. Relaxation of this local equilibrium as- 
sumption is discussed in Part II of this papet? in connection with the use of analytical 
chromatography for determining rate constants for biological binding processes. 

Another popular assumption has been that of linear equilibrium behavior. In 
most analytical chromatography the quantity of solute in the sample is very small, 
and one is nearly always operating in the low-concentration regime where the equi- 
librium isotherm relating the concentration in the stationary phase to that in the 
mobile phase is linear. This assumption is rarely justified for affinity chromato- 
graphy, however. The reason is that the strength of the specific biological interactions 
is often so great that significant curvature of the isotherm exists over the concentra- 
tion range of the experiment (Krc > 1). In this paper we will discuss the effect that 
this equilibrium nonlinearity has on the results of a given experiment and on the 
correct interpretation of the data. 

LOCAL EQUILIBRIUM THEORY 

Two fundamentally different procedures for performing analytical affinity ex- 
periments are: zonal and frontal elution. In zonal elution experiments the solute is 
introduced as a (short) pulse, and the elution volume is determined from the first 
moment of the effluent peak. In frontal elution solute is introduced continuously 
until the column is completely saturated. The elution volume is then determined by 
integrating behind the entire effluent concentration profile (the breakthrough curve). 

Nichol et ~1.~ have derived a set of elution volume equations for frontal analy- 
sis. They considered several possible schemes for solute binding to free ligand or 
inhibitor and immobilized ligand. The frontal experiments differ from zonal experi- 
ments when the equilibrium relationships are nonlinear, as will be shown below. 
Therefore equations derived for frontal analysis cannot necessarily be used to inter- 
pret zonal data. Although frontal analysis is intrinsically a better technique for de- 
termining elution volumes, it suffers from the disadvantage that a larger amount of 
the solute is needed to saturate the column. 

Dunn and Chaiken6, among others, have derived elution volume equations for 
zonal experiments. Their equations are strictly valid only for linear equilibria, that 
is, for solute concentrations such that &c 4 1. This criterion is often practically 
very difficult to fulfill for biological interactions that are characterized by rather large 
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association constants: the concentrations required are so small that accurate peak 
detection can be problematic. The reason that Dunn and Gilbert’ were successful in 
comparing their zonal and frontal results was that the interaction was so weak (& 
x lo2 M-l) that they were operating in the linear range where the zonal and frontal 
theories converge. Some additional important assumptions implicit in these equations 
and their application to affinity experiments will be discussed below. 

The nature of the concentration problem in zonal elution is explained simply 
as follows: when the equilibrium isotherm is nonlinear, the partition coefficient for 
the solute in the mobile and stationary phases, and therefore the velocity of the zone, 
is a function of the local concentration. Ordinary zone spreading that results from 
diffusional processes, from slow kinetics, or from mixing causes local concentrations 
to decrease as the zone moves along the coltnnn. (It will be shown later that zone 
spreading can occur even in the limit of local equilibrium.) As a result, the zone 
velocity is continually decreasing along the column and does not reach a constant 
value until the local concentrations reach the linear portion of the equilibrium iso- 
therm. Thus the binding constants one would measure from zonal experiments can 
be expected to depend on the length of the columns used as well as on the concen- 
tration in the same pulse. The equilibrium constants would also depend on param- 
eters such as the particle size that increase or decrease zone spreading. Only in the 
limit of linear partitioning is the zonal elution experiment used to measure equilib- 
rium constants valid, unless, of course, the concentration changes are taken into 
account by continuously calculating the zone velocities at every column position.4 

To illustrate this we will start with a widely-used equations,‘j for the elution 
volume V, of a solute P binding to ligand sites L on the particles. To keep the 
exposition as simple as possible, we will consider here only the binding of P to im- 
mobilized ligand with no inhibitor present. 

The interaction is described by 

PI + PI = WI & = [PLI 
Pltu 

And %, is given by 

(2) 

[PI, the concentration of P inside the particles, is the sum of the solute bound to 
affinity sites, which we will call ppqp, and that in the mobile phase within the pores, 
/3cip. /I is the volume fraction of the particle that is available to the diffusing solute, 
and crp is the concentration of P in the pore liquid, averaged over the entire particle. 
[P] is the bulk mobile phase solute concentration, which we will call cp. V0 is the 
column void volume, and V, is the volume of the beads, equal to the total volume 
v minus V,. If E is the void fraction of the column, then V0 = EV and V, = 
(1 - E)V. Using this nomenclature, eqn. 1 becomes 
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v, = & + (1 - &)/I + (1 - &) ppqp (4) 
CP 

where we have assumed that at equilibrium Cip = cp. In the absence of adsorption 
(qp = 0), we retrieve the familiar gel filtration result that says that the elution volume 
is equal to the fraction of the colubm available to the solute. 

For linear adsorption equilibria (qp = Kcp), eqn. 4 becomes 

v, = {E + (1 - &)/3 + (1 - s)&X)v (5) 

This is the retention volume obtained from linear theorye, in the limit of very short 
pulses. 

Up until this point there is no problem with using these results for both zonal 
and frontal elution because the elution volumes are independent of the mobile phase 
concentration. However, this is no longer the case when the equilibrium relation is 
nonlinear. For example, let us look at the Langmuir isotherm, which one obtains 
from interactions that are described by eqn. 2. In eqn. 2 [PL] is the concentration of 
bound P, which we have called ppqp. [L] is the concentration of uncomplexed, active 
immobilized ligand, which is the difference between the maximum number of acces- 
sible binding sites and those that are occupied, pp(Qmax - qp). From eqn. 2, at equi- 
librium we obtain the familiar Langmuir equilibrium relation 

QmaxK~c~ 

qp = 1 + KLcp 
(6) 

where KL is the Langmuir constant, or association constant, of the binding interac- 
tion. Substituting this into eqn. 4 gives 

v, = & + (1 - &)fl + 
(1 - 4~,Qma& 

’ 1 -I- KLcp 

We see from eqn. 7 that for nonlinear equilibria the elution volume depends on some 
mobile phase solute concentration. In frontal elution experiments, this equilibrium 
concentration is known: it is the concentration of P in the feed. This is the value of 
cp everywhere in the column at equilibrium. In zonal experiments, however, the value 
is always less than the concentration in the feed pulse and it is constantly changing 
as the pulse moves along the’column. It is clear from eqn. 7 that eqn. 1 is strictly 
valid for zonal elution when KLcp 4 1, that is, when one operates in the linear portion 
of the equilibrium isotherm. Since the binding constants for most biological inter- 
actions are large, the pulse concentrations must be extremely small in order to use 
the zonal equations. The frontal elution equations, on the other hand, are valid for 
all concentrations. The frontal and zonal equations become equivalent in the low 
concentration limit. 

At this point we will digress slightly in order to consider the equations for 
elution volume that are commonly used to interpret data from analytical affinity 
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experiments. Dunn gives the following equation for the elution volume of a solute 
in the absence of competing ligand (eqn. 9 of ref. 3): 

WI v, = I/’ + (V - Vo) - 
KIL 

where V’ is the unretarded elution volume for the solute [{.s + (1 - E)/?}Y in our 
nomenclature], and V, is the void volume (= EV). KIL is the dissociation constant for 
the interaction. If we recast eqn. 8 into the nomenclature of this paper, we see that 
several discrepancies exist between the result, eqn. 9, and eqn. 7. 

v, = 
1 

& + (1 - E)/? + (1 - &)BF}V (9) 

First of all, the assumption implicit in using eqn. 8 is that one is operating in the 
linear regime (KLcp < 1). [I-L], the concentration of immobilized ligand in eqn. 8, 
is equivalent to ppQma., the total concentration of accessible sites. ppQmax must be 
determined from the plateau of the Langmuir isotherm or, better, from the intercept 
of its double-reciprocal plotg. Obtaining ppQmax by hydrolysis of the gel7 will lead to 
serious errors in the determination of the equilibrium constants since the number of 
accessible sites is often but a fraction of the total immobilized ligand. Nor should 

PPQSW be equated to the binding capacity of the gel under the conditions of the zonal 
experiment: since the solute concentrations are low, the capacity thus measured 
would be just a fraction of the binding capacity at infinite concentration [q = 
QmaXK~c/(l + KLC) << Q,,,,, when KLC Q 11. 

Lastly, the dissociation constant KIL in eqn. 8 is equal to j3/KL, and not to l/KL. 
This is true because KIL was definedin the original derivation by Dunn and ChaiketV 
as the dissociation constant of the interaction between the immobilized ligand and 
solute that has partitioned into the liquid inside the bead. The solute concentration 
in the liquid inside the pores, based on the particle volume, is /?cP at equilibrium, not 
cp. The dissociation constant defined by Dunn and Chaiken is then the product of 
D and the intrinsic dissociation constant. As a result of this, dissociation constants 
measured using eqn. 8 will depend on the porosities of the particles used to im- 
mobilize the ligand. In fact, if the experiment is performed on solid beads (v’ = V,,; 
/? = 0), then eqn. 8 predicts that no retardation occurs, which is not the case. Values 
of KIL obtained from eqn. 8 will be artificially small and will not be directly com- 
parable to solution values, even when the intrinsic dissociation constants are equal. 
This problem does not arise with eqn. 7. 

One may wonder whether the average solute concentration in the pore liquid 
does equal the bulk solute concentration at equilibrium, as assumed in this argument. 
It is possible that the local concentration is smaller, as a result of exclusion effects at 
the pore entrances. If the pores are large compared to the diffusing solute, then little 
effect on the equilibrium concentration would be expected. However, if the pores are 
very small, on the order of the size of the solute, then the local concentration of 
solute around the immobilized ligand may be appreciably smaller than in the bulk 
solution. There also may be some local concentration effects at the pore surface itself 
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that result from hydrodynamic or electrostatic interactions with the pore walls and 
the immobilized ligands. Thus one can argue that equilibrium constants measured by 
affinity chromatography will differ from those measured in solution, even if the in- 
trinsic association constants are equal and /I is known. 

The preceding discussion pertains to Ku_ in all of the zonal elution equations 
listed in the Dunn review3. 

INHIBITION EXPERIMENTS 

Once KL and ~~~~~~ have been determined by, for example, frontal elution 
experiments over a range of solute concentrations co, the effects of inhibitors or 
competing soluble ligands can be quantitatively assessed. Once again, the elution 
volume equations that have been derived for competition experiments often assume 
that the isotherm is linear. Consider the following binding scheme 

P+L*PL 
[PLI 

KL = [P][L] 

P+I=PI Ki = [PI] 
Pm 

(10) 

where P and L are, as before, the solute and immobilized ligand, and I is a soluble 
inhibitor or competing ligand, present at constant concentration cI. The elution vol- 
ume equation for this case is given by Dunn (eqn. 4 of ref. 3) for linear equilibria 
and cI % co. The more general equation for both linear and nonlinear equilibria is 

v, = & + (1 - &)fi + 
(1 - s)p,Qm,K~ 

V 
1 + K,c, + KLco 

where q 9’ co. This can be rearranged in the usual way: 

V 1 + KLCO , &I 

(11) 

ve - {E+ (l--M}v = (1 -&&?maxK~ + (1-4~pQmaxK~ 
(12) 

A plot of the left-hand side versus cl for frontal analysis should give a straight line 
with intercept (1 + KLco)/( 1 - &)ppQmaxKL and slope K&l - c)p,Qm,KL. co is of 
course kept constant during these experiments. The quantity (1 - c)ppQmarKL should 
be determined independently in the absence of inhibitor by a double reciprocal plot 
of elution volumes at various co, as described earlier. 

Malanikova and TurkovalO, in a widely referenced paper on analytical affinity 
chromatography, compared results obtained from frontal and zonal elution inhibi- 
tion experiments. The elution volume equations they used to interpret their data 
assume linear equilibria, although they were clearly operating in the nonlinear regime. 
In order to evaluate (1 - s)ppQmsx, the concentration of accessible binding sites, a 
pulse of concentrated protein was applied to the column. They then eluted at low 
pH and used the amino acid content of the eluted protein to determine the amount 
that had been bound to the affinity beads. In this way they measured the concentra- 
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tion of binding sites to be 1.2 . lO+ M. This procedure is incorrect for several reasons, 
In the first place, the amount of solute bound to a column in such an experiment 
depends on the concentration of solute in the pulse and how that pulse spreads out 
in the column. The maximum number of binding sites is filled only in the limit 
co -+ co. What is more important, in order to find the equilibrium uptake, one must 
be sure to saturate the column. This means that the solute must be fed continuously 
in a frontal analysis mode until the outlet concentration equals the feed concentra- 
tion. The capacity at that particular co can then be found from the area behind the 
breakthrough curve (in the absence of inhibitor). For example, Malanikova and Tur- 
kova*O show a breakthrough profile for trypsin adsorbing onto p-aminobenzami- 
dine-NH2-Spheron in their Fig. 4. The area behind the curve for cI = 0 is roughly 41 
ml. The volume accessible to a tracer is 8.5 ml, and therefore the protein in 32.5 ml 
of feed was adsorbed onto their column. At a feed concentration of 0.15 mg/ml = 
6.25 . lO+ M the total uptake was 4.88 mg (2.03 . lo-’ moles). As the total column 
volume was 9.55 ml, (1 - c)ppqP = 2.1 . lo+ M. In other words, the column capacity 
under these conditions was 75% higher than the “working capacity” that these au- 
thors measured. 

The equilibrium capacity measured from the breakthrough profile is still not 
equal to (1 - ~~~~~~~~~ However, we can estimate (1 - .s)ppQmax from the equation 
from the Langmuir isotherm (eqn. 6) and &. If we use the association constant for 
the complex formed between trypsin and free p-aminobenzamidine (5.3 . lo4 M-l), 
we find 

Cl-4~pQmax = (1 --E)ppqp (’ LLy) = 8.5. lo-‘M 

This error in (1 - s)ppQmax accounts for the high KL observed and attributed by 
Malanikova and Turkoval to nonspecific adsorption. The value of 5.3 . lo4 M-l for 
KL is consistent with the data if they are interpreted using eqn. 12. 

The same problem appears in the zonal experiments. Since the retardation of 
the solute peak is proportional to the product of KL and the number of accessible 
binding sites, a value of Q,,,., that is too low would lead to a measured association 
constant that is too high by the same factor. The zonal data of Malanikova and 
Turkoval show significant nonlinear equilibrium effects: asymmetries in the exiting 
peaks and tailing that makes calculation of the peak moments difficult. These authors 
erroneously equated the volume at the peak maximum to the elution volume, a pro- 
cedure that underestimates the true elution volume. Frontal analysis is clearly pref- 
erable in this situation. 

EXACT SOLUTION FOR NONLINEAR LOCAL-EQUILIBRIUM ZONAL ELUTION 

Eqn. 1 is not a valid starting point for nonlinear zonal chromatography (for 
KLcp 2 1). Even if the diffusion and binding kinetics are very fast and local equilib- 
rium can be assumed, the square pulse shape is not conserved as the pulse moves 
down the column. In systems with nonlinear isotherms, the pulse instead develops 
a front that moves at a certain concentration-dependent velocity. It has a slower- 
moving trailing edge that serves to dilute the pulse as it progresses. This is clear from 
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‘looking at the solution to the differential equations for single-solute nonlinear chro- 
matography”. Instead of starting from eqn. 1, we will look at the governing partial 
differential equations to find the solution for the exiting concentration profile for a 
single solute pulse and Langmuir equilibrium. The governing equations are 

3 = PpcIP + PCP = 
P~Q~ALCP 

1 + KLCP 
+ PCP 

(13) 

Eqn. 13 is the continuity relation for a solute P in a packed bed, and eqn. 6a states 
that equilibrium is reached between the mobile and stationary phases at every point 
in the column. The particle concentration s includes both the adsorbed material and 
the solute in the pores of the affinity particles. The inlet solute pulse has concentration 
co and is of duration to. 

( 

co O<t<t, 
c(O,t) = (14) 

0 t > to 

The solution to this problem is straightforward using the method of characteristics’ l. 
For a column of length L, the elution times for the pulse front (tr) and the trailing 
edge (te) are 

tf = to + L E + (1 -EM + u. .JU -4~pQmaxK~ - dtouo&colL) 

te = to + 5 (E + (1 -EM + (1 -~>p,QmaxK~> 

The concentrations are given by 

KLc = 
pp(l - 4QmaxK~ 

uo(t-to) - {E + (l-E)B}L 
-1 (tf < t < t,> 

If 

to > pp(l -@QmaxK~ ’ 
KLCO 

uo (1 + KLCO)~ 

then the concentrations are given by 

1 
co (tf < t < t,) 

c= 

eqn. 17 (tx < t < t,) 

(15) 

(16) 

(17) 

(18) 
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where 

9 

I 
& + (l-&)/3 + 

(1 - 4~,Qmax& 
(1 + &co) 

t, = to + 4 
I 

& + (l-E)/? + 
pp(l- ~Q,&L 

(1 + KLCOY 

The time at which the trailing edge concentration falls back to zero, t,, is equal to 
the elution time of the trailing edge in the linear theory (eqn. 5). This is not surprising 
since at the trailing edge the solute concentration has become so small that &c 4 
1. 

Representative chromatograms are plotted in Fig. 1. Unlike the behavior for 
linear equilibria, the pulse retention times and shapes depend on the initial concen- 
tration co. In the absence of dispersive effects caused by departures from equilibrium, 
a sharp pulse front moves along the column followed by a more dilute tail. The 
velocity of the trailing edge is less than that of the leading edge, and the pulse is 
diluted as it moves down the column. Thus for nonlinear equilibria there is band 
spreading that arises independently of diffusion and mixing. This has important con- 
sequences when one wishes to use zone spreading to determine kinetic constants. 

In the limit of very large pulses (to + co), one obtains the frontal elution result, 
eqn. 7. 

I .o- 
KLcO = 0.0 I 

0.8 - 

0.6- 
C 

5 K,_c,, = 0. I 

0.4 - 

4.6 5.0 5.4 5.8 

Fig. 1. Chromatograms calculated for nonlinear local-equilibrium theory (eqns. 15-18). E + (1 - E)B = 
0.8; (1 - GpQmai = 5; tOuO/L = 0.1. The concentration of the pulse has a strong influence on both the 
shape and position of the exiting peak. 
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COMPARISON BETWEEN THE LINEAR AND NONLINEAR THEORIES 

We would like to know the error to be expected if one nonetheless uses eqn. 
5, the linear equation, to determine association constants for nonlinear systems. To 
assess this we will compare the elution time of the centers of gravity of the exiting 
pulses for a range of values of J&co. This elution time is just the average retention 
time or first moment of the peak, defined by 

03 

s c(l,t)tdt 

Pl = : 

s 

c(l,t)dt 

0 

(19) 

(Defining the elution volume as the volume at which the peak concentration is a 
maximum can lead to serious errors when the peaks are asymmetric.) Performing the 
integration of eqn. 19, we can calculate p1 for pulses of various feed concentrations 
in order to see the effect of the isotherm nonlinearity on pulse retention times. Results 
are plotted in Fig. 2 for (1 - s)ppQmaxKL = 5 along with the retention times calculated 
for frontal experiments (eqn. 7) and linear theory. 

Up to concentrations such that &co w 1, there is little concentration effect 

5.5 - 

5.0 - 

4.5 - 

4.0 - 

F& 3.5 - 

L 
3.0 - 

2.5 - 

2.0 - 

I .5 - 

I.0 - 

linear theory 

fronlal elution 

I I 
-3 -2 -I 0 I 2 3 4 

log (KLco) 

Fig. 2. Average elution times for zonal and frontal elution experiments. 
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on the mean retention time, although from Fig. 1 we see that the shapes of the peaks 
calculated from the exact nonlinear local equilibrium theory are quite different from 
the shape of the peak in the linear limit. The approximately 20% difference between 
KL obtained from the comparison between the linear and nonlinear theories at KLco 
= 1 will in a real experiment be even less, because mixing and diffusional band- 
spreading will aid the dilution process. The effect on retention time quickly increases, 
however, for KLco > 1. 

In frontal analysis the error that would result from using a linear elution vol- 
ume equation (eqn. 5) instead of the exact ones (eqns. 7 and 12) is of course much 
greater. When cI = 0 the difference is a factor of 1 + &cc,. In the work of Malan- 
ikova and Turkoval this factor alone leads to a 33% error. 

CONCLUSIONS 

Current zonal elution theory is based entirely on the assumption that one is 
operating in the linear region of the equilibrium isotherm. This assumption may be 
difficult to justify for biological interactions that have highly nonlinear equilibrium 
behavior. To investigate nonlinear effects on the equilibrium binding constants one 
would measure using analytical affinity chromatography, we have used a simple chro- 
matography model: local-equilibrium with a Langmuir isotherm’ l. Upon comparing 
the results from this model to those from the linear theory, we see that there is 
relatively little difference in the predicted average retention times, as long as &co 
c 1 (Fig. 2). Hethcote and DeLisi i2 have derived an approximate expression for the 
mean retention time for nonlinear chromatography without the local-equilibrium 
assumption. They also conclude that the effect of isotherm nonlinearity on retention 
time is relatively small. 

The major effect of isotherm nonlinearity is zone spreading. From the chro- 
matograms plotted in Fig. 1, it is clear that a considerable degree of zone spreading 
occurs even when diffusion and kinetics are fast. This means that one must be ex- 
tremely careful to operate in the linear range when using zonal affinity chromato- 
graphy to measure kinetic constants. An alternative is to include isotherm nonlin- 
earity in a chromatography theory that includes kinetics. To be useful, this theory 
should be able to distinguish between the effects of finite mass transfer rates and the 
biological binding kinetics. One such model will be presented in Part II of this paper.* 

An alternative to the zonal method is frontal elution. Since the concentration 
cp at equilibrium is known (= co) for the frontal case, the exact equations for the 
elution volume (eqns. 7 and 12) can be used. Therefore frontal elution is not limited 
to such low concentrations. Frontal methods can also be used to determine kinetic 
constants. 

SYMBOLS 

C solute concentration in liquid (M) 
G average solute concentration in pore liquid (M) 
GP average concentration of P in pore liquid (M) 

I Cl concentration of inhibitor in liquid (M) 
co feed or pulse concentration (M) 
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CP concentration of P in liquid (M) 
4 average sorbate concentration (mmoles g-l particle) 

qP average concentration of sorbed P (mmoles g-l particle) 
s average concentration inside particles (= ppqp + Bcip) 

t0 pulse length (s) 
UO liquid superficial velocity (cm s-l) 
V total column volume (cm3) 
2 distance along column (cm) 

PI concentration of inhibitor in liquid (= c,) (M) 
[I-L] concentration of immobilized ligand (= ppQmax) (mmoles cm-3 particle) 
K linear equilibrium distribution coefficient (cm3 g-l particle) 
%, distribution coefficient defined by eqn. 1 (dimensionless) 
KL Langmuir or association constant (M--l) 
KIL dissociation constant (= p/KL) (M) 
L column length (cm) 
[L] concentration of uncomplexed ligand [ = pp(Qmax - qp)] (mmoles cmm3 particle) 
[P] concentration of solute in liquid (= cr.) (M) 
[P] total concentration of P inside particles ( = ppqp + /.&zip) (mmoles crn3 particles) 
[PL] concentration of bound solute (= ppqp) (mmoles cmF3 particle) 

Q max maximum number of available sites (mmoles g-l particle) 
V, elution volume (cm”) 
vo column void volume (cm3) 
VS column solids volume (cm”) 
V unretarded elution volume [ = (E + (1 - E)/?}v] (cm3) 
B particle volume fraction available to solute 
E column void fraction 

CL1 average retention time (s) 

PP particle density (g cmw3 particle) 
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